Java程序查找两个数字的最大公因数 - Java教程

由网友 大卫 发布 阅读 14

Java程序查找两个数字的最大公因数 - Java教程

Java 实例大全

在此程序中,您将学习在Java程序查找两个数字的最大公因数(GCD)。这是通过在if else语句的帮助下使用for和while循环来完成的。

两个整数的HCF或GCD是可以精确地将两个数相除(没有余数)的最大整数。

示例1:使用for循环和if语句查找两个数字的最大公因数

public class GCD {

    public static void main(String[] args) {

        int n1 = 81, n2 = 153, gcd = 1;

        for(int i = 1; i <= n1 && i <= n2; ++i)
        {
            // 检查i是否是两个整数的因数
            if(n1 % i==0 && n2 % i==0)
                gcd = i;
        }

        System.out.printf(" %d 和 %d 的最大公因数是 %d", n1, n2, gcd);
    }
}

运行该程序时,输出为:

81 和 153 的最大公因数是 9

在此,将要找到其最大公因数的两个数字分别存储在n1和n2中。

然后,执行for循环,直到i小于n1和n2为止。这样,迭代1到两个数字中最小的所有数字以找到最大公因数。

如果n1和n2都可被i整除,则将gcd设置为数字。 一直进行到找到最大数(GCD),该数将n1和n2均除而无余数。

我们还可以使用while循环解决此问题,如下所示:

示例2:使用while循环和if else语句查找两个数字的GCD

public class GCD {

    public static void main(String[] args) {

        int n1 = 81, n2 = 153;

        while(n1 != n2)
        {
            if(n1 > n2)
                n1 -= n2;
            else
                n2 -= n1;
        }

        System.out.println("G.C.D = " + n1);
    }
}

运行该程序时,输出为:

G.C.D = 9

这是找到GCD的更好方法。在此方法中,从较大的整数中减去较小的整数,然后将结果分配给保存较大整数的变量。这个过程一直持续到n1和n2相等。

仅当用户输入正整数时,以上两个程序才能按预期工作。这是第二个示例的一些修改,可以找到正整数和负整数的GCD。

示例3:正负数均为GCD

public class GCD {

    public static void main(String[] args) {

        int n1 = 81, n2 = -153;

        n1 = ( n1 > 0) ? n1 : -n1;
        n2 = ( n2 > 0) ? n2 : -n2;

        while(n1 != n2)
        {
            if(n1 > n2)
                n1 -= n2;
            else
                n2 -= n1;
        }

        System.out.println("G.C.D = " + n1);
    }
}

运行该程序时,输出为:

G.C.D = 9

Java 实例大全

Java程序来计算整数中的位数 Java程序来检查一个数字是偶数还是奇数